PUPB

La science quantique
Une vision singuliere

IX) Qubits

P.A. Besse
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PUPB

Qubits =
Systeme a deux états
avec des parametres controlables

et qui peuvent interagir
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PUSB Systeme a deux ¢tats

Considérons un systeme donn¢ par deux modes propres:

0,)=|") o)=]4)

Etat superposé:

‘W>=cos§-”>+sin§-e’¢-‘¢> <l//HW>=1
( cosg ) 0el0, ]
)=
\sing-e“") pel0,27]
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Polarisation

Qubits optiques

/‘H>\
V),

Exemples de Qubits

, Spins
Resonateur LC électroniques
anharmoniques
Spin quits
Transmons P

/‘ g>\ U) 1)

), 24,
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PUPB

Spin en Z

Vecteurs propres:

)

Valeurs propres:
A, =+1 A =-1
Projecteurs:

B=la){al-(y ol

R=lo)(ol-(g ||

Mesure du spin Z

1 O
Oz Ezﬂi .B:(O _J

Matrices de Pauli

Spin en X

Vecteurs propres:

=gzl -5

Valeurs propres:
A, =+1 A =-1

Projecteurs:

Blo)l=3(; ]

I 1
(1 -1
Reta)ol-3( " 1)

-1 1

Mesure du spin X

0 1
Oy Ezﬂz '}z)':(l Oj

Spinen Y

Vecteurs propres:

-4f) -5

Valeurs propres:
A, =+1 A =-1
Projecteurs:

1(1 —i
Rela)inl-3. 7]

1(1 i
Rela)(ol=1(, 1]

Mesure du spin Y

0 —i
Oy Ezﬂi .B:(i Ol]
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PUPB

Matrice hermitienne 2x2

Matrice hermitienne

M=M" =>M,=M,

\
Base de décomposition: ( 1 O O O )
X y z
a,+a. a_—ia
y
M = , =a,1+a.o0, +a,0, +a.o0,
a.+tia, da,—a,
avec a,etaa ,a, reels
Q. 2|dl
M=a,1 A -(n-c) avec =
2 h
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PUSB Propri¢tés des matrices de Pauli

) 2 2 2
Carrés o =1 o, =1 o =1

Traces: Tr(o,)=Tr(c,)=Tr(c,)=0

Tr(O'f) = Tr(O'f) =Tr(c’)=Tr(1)=2

Ir(o.0,)=Tr(c,0.)=Tr(c.0,)=0

Commutateurs: [Gx, O'y] — 7. o, [Uy’az:| = 5. o, [O'Z,O'x] =27 o,
[A4,B]= 4B - B4
Anti-commutateurs: {Gx, O'y} =0 {Uy , UZ} =0 {O'Z, Gx} =0

{4,B} = AB+ BA

hQ
. il ag-l+—n-6 i 71Q) hQ
Exponentielle e ( T2 j — ol .(COS (_j.lﬂ'sin (j(ﬁc?')j

2 2
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Qubits:
Sphere de Bloch

(ou de Poincaré)
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PURB

Sphere de Bloch: axes principaux

o) 10=1=1)

' Y
I
=
/
/
/7
- m=12)-Y
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PUSB Sphere de Bloch

, COSE
Etat superposé: V)= (wllw)=1

sin —- e’
2

0
COS —
. 1 0
<0'Z>= cosg sing-e_"” : : 2 |=coso
2 2 0 -1 .0 4
sin—-e
% :
— 0)+i|1)
<O'>=(COSQ sing-ei"’j.[o IJ. COSZ =sin@-cos @ l:;fl »Y
x 2 2 b0 sing-ew
2
0
o .0 (0 i) % o
<0'>= cos— sin—-e "’ || : =sin@-sin @
g 2 2 i 0 .0 4,
smz-e
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PUPB Etat superpose

(<Gx>\ /rx\
v)=|(o.)|=|
(0.)) =

Etat superposé:
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Etat pur:

\

Matrice densité d’un €tat superpose

g

COS —

0

sin — - &'

( 6 .6 _,
‘| COS— SIn—-¢€
2 2

j:

1

2

[1+cos9

sin @- e

sin@-e"?

l—cosd

10:

1
2

(ﬂ +<0'x>c7x +<c7y>0y +

(0.)o.

)

Ir(p)=1

Jo,

1
je

|
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PUAB Cas géncral:

ctats superposes et €tats mixtes

ri =1 ¢tat totalement superpose

L+|rf 2
r _
—_ 1 avece r| <1

2 |2

Etat partiellement superposé

Tr(p*) =

=0 état totalement mixte
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PUSB Degré de superposition

Totalement superposé Partiellement superposé
Totalement mixte

(o2)

Ir(p*) = L<Tr(ph) <1 Tr(p*) =4
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Hamiltonien,
Propagateur et

fréequence de Larmor
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PUPB Hamiltoniens et propagateurs

Hamiltonien général pour un single Qubit:  (Matrice hermitienne 2x2 )

hQ
H=lho, -1+—-(nxc7x+n o, +no )
2 y y z Z
/
Energie

Propagateur général pour un single Qubit:

H
1—t
h

—iv . Q . [ €
Ult)=e " =e ™" +| cos (Etj-lﬂ' sin (Etj-(nxax +n,0, +nZO'Z)

[ |
Y

Phase /
commune

Rotation d’angle Q de la sphére de Bloch autour de ’axe 7 = (nx n, nz)
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D Exemple:
SAR Effet de la différence d’€nergie

o % E,+E
) 2

AE=E, —E,

Hamiltonien: H :[

Rem: I’Hamiltonien correspond a I’énergie, ¢’est un «mesurabley, il doit étre hermitien
(ses valeurs propres sont réelles)

Propagateur:

AE
- it

i LE E 27 0
U(t):@ ht:e ht. COS &t 1+lSln Et .O-Z —e ht, €
2h 2h AE

Rem: Le propagateur n’est pas toujours hermitien, ce n’est pas un «mesurable»
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PUSB Fréquence de Larmor

cos(&/ 2))

Etat de départ |l//m> = (sin 0/2)

Evolution:

() =U(t)]w,)= o ( cos(9/2) ]

sin(@/2)-e "

T

Rotation autour de 1’axe Z

Fréquence de Larmor

QL

AL
h

Axe de rotation

11)
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Référentiel tournant et

Fréquence de Rabi
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—it

‘e

XY
Résonnance

Analogie:
référentiel fixe / référentiel tournant

PUPB

0=C)

Panamerican Highway

2025
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PUSB Couplage AC et reférentiel tournant

E, —i-T'sin(wt)) — AE :
Supposons: H=| =FE-1-—-0_+Tsin(wt) o
i -T sin(wt) E, 2 !
référentiel fixe référentiel tournant a la fréquence d’excitation :
] a
a, 0
[, ] 7)-(%)
1 | => J
.0 _
ih—v)=H|y) lh—ll/f> #:|7)

vec Fe (EO —T/2j (EOJF(AE—ha))].l_(AE—ha)). T
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PUPB

Dans le référentiel
tournant

Fréquence de Rabi:

Frequence de

Rabi

o (AE-ho)) 80,
e

. (ﬁxGX +n_o, )

Axe de rotation:

Dans le référentiel
tournant

10, =(AE—ho) + T

_ T
n, =
hQ,
n, =0
_ AEFE-hw
n, =
hQ,

<GZ> Axe de
rotation

N (ny 0 n,)
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PUSB Exemple: Oscillations de Rabi

Probabilité d’étre dans 1’état excité:

Ground
T Y . .9, ) 1+(o,)
2 .
Pl(f)E|<(P1||‘//(t)>| :(hQRJ sin” (7’?4}: 5 Z (o,) - Axe de
\ rotation
i 6.079 14.991 i (21.088
“ /| AE=hw
s E L E
‘”’ ”"\‘ """"""""
n::; é Detuned |AE - hC()| >0

N Strongly detuned
0 3 q: 9 12 ?’- 18 h.%' 24 21 30 |AE _ h(()| > 0 EXClted
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PAB Fr,equence.: de Rabiu:
exemple d’un qubit supraconducteur

AE Chaque point de la figure
Ao=——w correspond a une moyenne
fi sur env. 10’000 mesures

e
-l
o

o
o0

o
o

Excited state population P
o
B
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PUB Frequence de Rabi: Effet du detuning

Résonnant Detuned Strongly detuned

10)

Simulations par: Romain Nicolas Paul Couyoumtzelis
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Produits tensoriels
20983 .
de vecteurs et de matrices

Paire de qubits

A) Etats produits

(produit tensoriel de vecteur)

B) Etats intriqués
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PUSB Base commune aux deux qubits

Base «Alice»: Base «Boby:

Base commune, produit tensoriel des vecteurs des deux bases:

|Uu)=|U)®|u) = |Ud)=|U)®|d)= | Du)=|D)®u)= |Dd)=|D)®|d)=

o = O O

- o O O

o O = O

oS O O =
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PUSB Exemple spin Up /Down

Base «Alice»: | U > | D > Base «Boby: | M> | d >

Base commune: |Uu> |Ud> ‘Du> ‘Dd>

Paire de qubits ‘W> = 7, ‘Uu>+Z1 ‘Ud>-|—;(2 ‘Du>—|—;(3 ‘Dd>

oénéral:
/|Uu>
| vy
w)y=|"
Zz — Du>

X3

\ Dd)
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PUPB

A) Etat produit de deux Qubits

) =(a|U)+a|D))D(4 |u)+]d))

=a,p, ‘Uu>+0¢0,6’1 ‘Ud>+al,6’0 ‘Du>+al,81 ‘Dd>
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PUSB A) Etat produit

Alice Bob Etat produit
Produit tensoriel de vecteurs
B,
a, p. a,| .
al ﬂl IBn—l
|A>= |B>= 130
a, B, v, ) =|v.,)=|4)®|B)=| .| ..
B
&, ﬂn—l :Bo
o, | ..
ﬂn—l
i=0,1,...(n-1) j=0,1..(n-1) p=0,1,...(n2—1)
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Mgde
Alice \U>
aO
)-( &
)
Mode
Bob
|u)
B,
B) =
9)-(5
N
|d)

Exemple spin Up /Down

Etat produit:

) =(a,|U)+ | D))®(B,|u)+ B |d)) = o, B, |U) + &, 3, |Ud) + e, B, | Du) + e, B, | Dl

v;)=|4)®|B)

«produit tensoriel»

i=0,l1
ji=0,1

P
“h) o
i

\Dd>
p=0,1,2,3

Pierre-André Besse
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PARB Etat produit et décomposition

(U)+[D))®(|u)-|a))

=((0)®(ju)=|a)))+(| D)@ (|u)~[))) > |

en base d’Alice et Bob

1| -1

D)
4 u)~[d) 11
‘U> N o} o >
0/90 45/-45
Alice Bob
1p y-lay 11
‘U>+‘D> <« \ |+ o > />
+1
45/ —45 45/ 45

Pierre-André Besse
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B) Paire de Qubits intriques

v) 7 (a|U)+a|D)®(f,]u)+ )

p.9.35 “Qubits”
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Etats intriques

Certains états ne peuvent pas s’écrire sous la forme d’un produit tensoriel
d’un vecteur d’Alice et d’un vecteur de Bob

= Etat intriques

Exemples: Etats de Bell

U)®|d)-|D)®u) _

\/5 V2

U)®[d)+|D)®u) _ |
\/E 2

S = = O

—+

@, ':Bo
@, '131
&, ':Bo
, '/81

U)®[u)+|D)®]d)

o)

S
—_—0 O

1

Pierre-André Besse
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Etat intriqué et décomposition

D)

_IT

U) N

+1

U)+|D) < <+
v)+|p) -

0/90

Alice

en base d’Alice et Bob
\Ud)—| Du)
u> _IT +1
o > >
> 45/ —45
Bob

) =[D) ][} +|a) }=[[U) [ D) ]-[u) =) |

U)-D)

_IT

|u>+|d>jT

45/ -45

o

ju)=|d)

+1
—>

45/ -45

Pierre-André Besse
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2R Conclusion

Pour les états produits

Les mesures d’Alice et de Bob ne s’influencent pas

En mesurant Alice projette sur son état a elle. Cela ne provoque aucune projection chez Bob

Pour les états intriques

Les états sont globaux. Les mesures d’ Alice projettent globalement et influencent donc
instantanément les modes chez Bob.

Bob ne peut pas s’en apercevoir directement. Il faudra pour cela calculer les corrélations

Les mesures d’Alice influencent les modes de Bob
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Produits tensoriels
20983 .
de vecteurs et de matrices

Mesures communes

(produit tensoriel de matrices)
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Opérateur «produity:
PUSB . . .
produit tensoriel de matrices

NOO NOn NOO . NOn NOO NOn
M, My, | o e M,
NnO Nnn NnO Nnn NnO nn
NOO NOn NOO NOn NOO NOn
O=M®N=(0,,)=| M,| .. M| .. M| ..
NnO nn NnO nn NnO nn
NOO NOn NOO NOn NOO NOn
MnO Mn,] Mnn
«produit tensoriel» N, ... N, N, ... N, N, .. N,
i=0,..(n" -1
j=0,..(n"=1)
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PUSB Opérateur «non-produity»

Exemple:
1 0 0 0)
evor-|® VO FE MON
0 0 0 1
0 0 1 0,
«control NOT»
(1 0 0 0\(Uu) (Uu) Control» (gj o O [ZJ
0O 1 O O. Ud _ Ud
0O 0 0 1 Du Dd > Targety [uj O— P 0 [uj (d)
0 0 1 0)\Dd) \Du : ~ @) L

CNOT

Pierre-André Besse p.9.41 “Qubits” 2025



Exemple:

Alice
0/90

Bob
+45/-45

Exemple: spin Up/Down

0: NlO Nll NlO Nll
Mm(NOO NOI] MH(NOO NOI]
NIO Nll NIO Nll
«corrélation»
1 O
M=o )7
01 0 0)
I 0 0 O
O =
0O 0 0 -1
0 1 _
N:[ )=0X 00 -1 0,
1 0

Pierre-André Besse
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Matrices de mesure et de corrélation:
20953

1¢re expérience

-1 1
T T +1
< < O > / —>
+1
0/90 45/ -45
Mesure chez Alice Corrélation Mesure chez Bob

M,=0,%1
1 0 0 0)
0O 1 0 O
0 0 -1 O
00 0 -1

(01 0 0)
10 0 0
00 0 -1
0 0 -1 0

M,=1Q®0c,

_— e O O
-

o O = O
o O O

Pierre-André Besse
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PARB Exercice: Matrices de mesure
et de corrélation, 2™ expérience

-1 _1
$ r
< < O > / —>
+1
45/ -45 45/ —-45
Corrélation Mesure chez Bob

Mesure chez Alice

M,=0,®l
(0 0 1 0)
0 0 0 1
1 0 0 O
01 0 0

M,,=0,00,

(0 0 0 1)
0 01 0
01 0 0
1 0 0 0

M,=1Q®0c,
01 0 0
1 0 0 0
0 0 0 1
0 01 0

Pierre-André Besse
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PARB Moyerrmes et co.rrélation
avec un etat produit: exemple

(1)
B B =
D
1¢re expérience:  Alice 0/90, Bob 45/-45 Déme axnérience:  Alice 45/-45, Bob 45/-45
(M) = W rd | Mo |V 100 ) = O (M 1) = (s |M s |00 ) =1
()= (0 o | M, ) =1 ()= (0 |, 1) =1
(M )=V | M 1 ) = () = (s | M ) =1

REM: <MAB>:<MA>°<MB>
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Etat intriqué:

] ¢re expérience:

(M ,)=0
<MB>:O
<MABI> =0

REM:

Moyennes et corrélation

avec un ¢tat intriqué: exercice

1

‘Wsing> A _q

Alice 0/90, Bob 45/-45

2eme exnpérience:

(M ,)=0

Etat «singulet» de Bell

Alice 45/-45, Bob 45/-45

A

Pierre-André Besse
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PUSB Cas genéral avec 1’¢tat produit

Alice et Bob font leurs mesures avec un polarisateur a angle o resp. 3.

Alice Bob
cos(2a) sin(2x) o = (003(2,3) sin(2 ) j
O = sin(2a) —cos(2a) 7 {sin(2f) —cos(2p)
cos(2a) cos(2f) sin(2p) sin(2a) cos(2p) sin(2p)
v - sin(2f) —cos(2/) sin(2f) —cos(2/)
@ sin(2a0) cos2f)  sin(2f) cos2a) cos(2f)  sin(2f)
sin(2f) —cos(2/) sin(2f) —cos(2/)

Etat produit, exemple

| (M ,)=sin(2a) (M,)=—-sin(23)
1 1 —1
‘ ‘//pmd> = %[lj ®f(_1] =3 | Corrélation
-1 (M ) =—sin2a)-sin(2fB) =(M ,)-(M )
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PUSB Cas genéral avec 1’état «singulety

Alice et Bob font leurs mesures avec un polarisateur a angle o resp. 3.

Alice Bob
cos(2a) sin(2x) o = (003(2,3) sin(2 ) j
O = sin(2a) —cos(2a) 7 {sin(2f) —cos(2p)
cos(2a) cos(2f) sin(2p) sin(2a) cos(2p) sin(2p)

v - sin(2f) —cos(2/) sin(2f) —cos(2/)

@ sin(2a0) cos2f)  sin(2f) cos2a) cos(2f)  sin(2f)

sin(2f) —cos(2/) sin(2f) —cos(2/)
Etat «singulet»
1

‘ Wsing> = % _1 Corrélation
\0) <MAB>:_COS(2(a_ﬂ)) A
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Exercices
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PUPB

Base commune:

Exercice 9.1:
Base commune Alice-Bob-Charlie

()

p:O, °

hz‘jk>5‘hp>: €i>®‘f1>®‘gk>

Exemple: spin Up/Down

Base «Alicey:

Base commune:

6?

Base «Boby: Base «Charliey:
0 1 0 1
() w=le) () me)
Etat produit

Pierre-André Besse
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fl)af/} Exercice 9.2:

operateur produit entre Alice, Bob et Charlie

O=MQSNRXL
Alice Bob Charlie
M:(MOO M()l) N:[NOO ij L:[Loo LOI]
Mlo Mll Nlo Nll LlO L11

0= 79

Pierre-André Besse p.9.54 “Qubits” 2025



PAY Exercice 9.3:
SUAR Hamiltonien de couplage 1ISWAP

C €l
Reprenons 1’exercice 8.3:

Considérez seulement deux modes
dans chaque résonateur (2 qubits)

<

i

Exprimez I’opérateur H_ sous forme matricielle
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PUSB Exercice 9.4: singulet / triplet

Supposons une €nergie d’interaction de la forme «spin-spin» entre deux qubits:

H~0,®0,~0,®0, +0,80, +0, &0,,

1) Exprimez H sous la forme d’une matrice 4x4

2) Montrez que les états de Bell sont les modes propres de cet Hamiltonien.
Quelles sont les valeurs propres correspondantes ?
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D Exercice 9.5:
SaAB Etats de Bell

Montrez que les états de Bell ne
sont pas des états produits

+ A® B 2,) +A®B

Q

‘@1>z ‘¢t2>z # A® B |¢t3>z

_— 0 O =
H
N
X
oy
S = = O
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2R Exercice 9.6

Montrez que ces opérateurs ne sont pas des opérateurs «produit»

1 00 0
cvor=|® 1 00 FE MQN
000 I
0010
00 0 0
00 1 0
000 E MEN
00 0 0
1 0 0 0
&1®&2=8_21 _213 F MQON
0 0 0 1
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